Convegno: Le emissioni dalla combustione della legna in piccoli impianti domestici e la qualità dell'aria, 23 maggio 2011, Regione Lombarida

UNIVERSITÀ DEGLI STUDI DI MILANO

DIPARTIMENTO DI CHIMICA INORGANICA, METALORGANICA E ANALITICA

Metodologie per l'individuazione dei traccianti della legna nel particolato atmosferico

P. Fermo (paola.fermo@unimi.it)

Combustione delle biomasse come sorgente di particolato fine : impatto su qualità dell'aria, salute e cambiamenti climatici

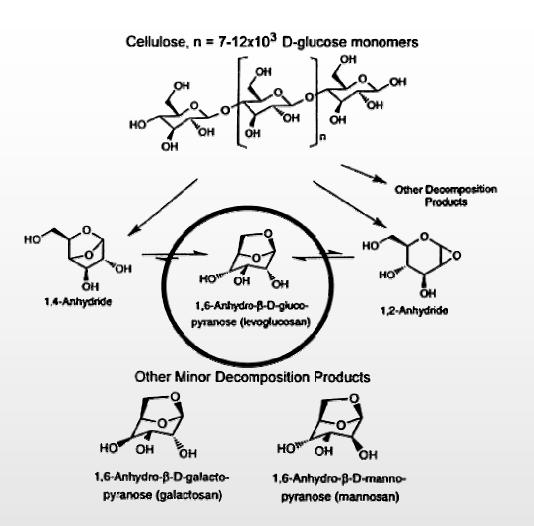
A livello europeo il PM da wood burining rappresenta il 20-30% del PM2.5

Inverno: combustione della legna negli impianti di riscaldamento

Estate: combustione di sterpaglie

Ad oggi un metodo standardizzato per valutare il contributo della combustione della legna al PM non esiste

1. Macro-tracer method


2. Modelli recettore (Factor Analysis e Chemical Mass Balance)

1. Macro-tracer method (attraverso la quantificazione del levoglucosano)

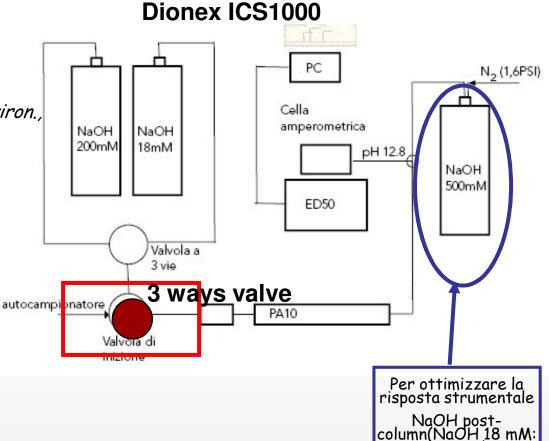
>Un tracciante per la combustione di biomassa

Levoglucosano: marker per la quantificazione della sorgente bb

marker biogenico univoco per la combustione della biomassa, ed in particolare della legna, in quanto:

è emesso esclusivamente durante i processi di pirolisi della cellulosa a T > 300 ° C;

è rilevato in alte
concentrazioni nel particolato
fine che proviene dalla
combustione di materiali
organici come vegetazione e
legna;


è stabile in atmosfera.

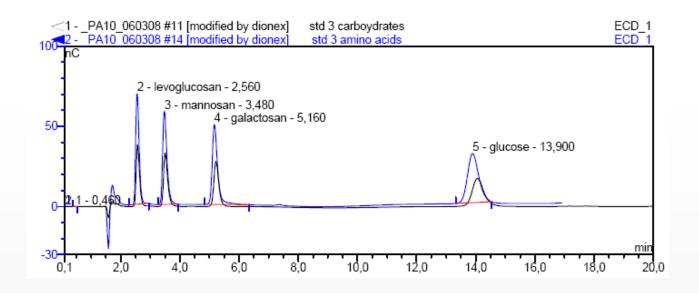
HPAEC-PAD

✓ Metodica molto recente Engling G., et al. (2006). Atmos. Environ., 40, 5299-5311

√ Vantaggio: la preparazione del campione è minima

√Estrazione acquosa *dei* filtri; separazione su colonna a scambio anionico senza bisogno di derivatizzazione

set-up utilizzato presso i nostri laboratori


30 min NaOH 18mM analisi separazione

15 min NaOH 200mM rigenerazione isocratica:

15' NaOH 18mM equilibrio

	Levoglucosan	Mannosan	Galactosan
LOD (μg/mL)	0.002	0.001	0.001
LOD (μg/m³) ^a	0.004	0.003	0.003
LOD (μg/m³) b	0.002	0.001	0.001

a air flow = $1 \text{ m}^3/\text{h}$

b air flow = $2.3 \text{ m}^3/\text{h}$

GC-MS

Protocollo ampiamente sviluppato in letteratura

Pashynska V. et al. (2002) J. Mass. Spectrom; 37: 1249

Extraction

3 times (each time for 30 min) with 20 mL of dichloromethane/ methanol 80:20 v/v under ultrasonic agitation (an area of 1.5 cm² sample filter analyzed)

Reduction of the extract

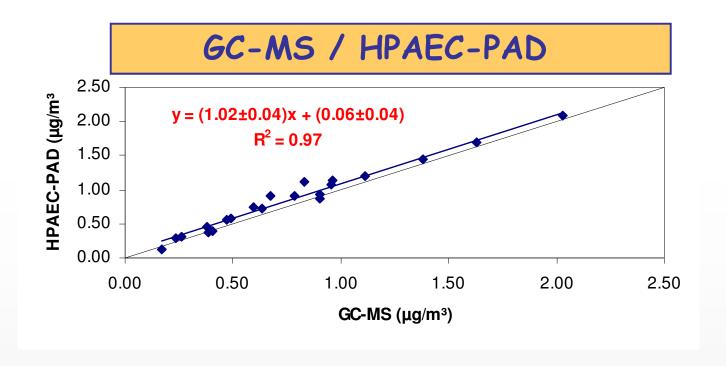
2 The combined extracts are dried under nitrogen and than dissolved in 200 µL of dichloromethane/ methanol (50:50 v/v)

Derivatization

Part of this solution is dried and transferred to a vial where 40 µL of a mixture containing MSTFA, Py +1%TMCS are added; the reaction is carried out at 70°C for 1h.

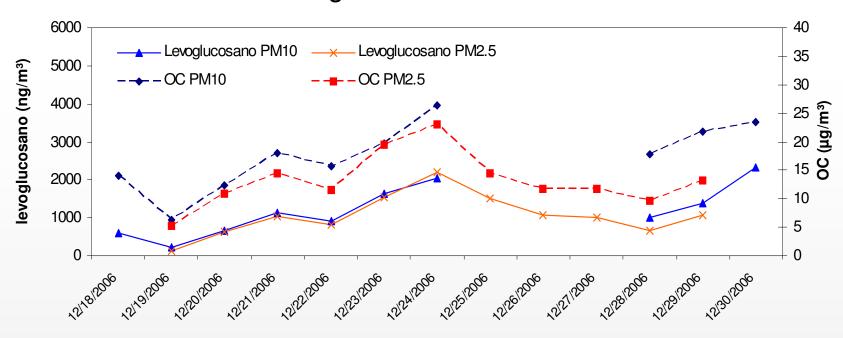
An internal standard was used for recovery calculation (methyl-D-xylanopyranoside)

Derivatizzazione: step critico!!!



❖ Analisi GC-MS: quale tipo di legno??

	hardwoods			softwoods			
compound	Yellow Poplar	White Ash	Sweet-gum	Mockernut Hickory	Loblolly Pine	Slash Pine	note
		Resin Acid	ls				
deisopropyldehydroabietic acid			-		0.302	0.105	b, d
16,17-bisnordehydroabietic acid			-		0.067	0.051	b, d
16-nordehydroabietic acid			-		0.103	0.057	b, a
secodehydroabietic acids			-		0.519	0.150	b, d
pimaric acid			-	. /	2.520	1.365	a,d
sandaracopimaric acid			-		0.464	0.526	b, d
dehydroabietic acid	+	+	+	+	12.329	6.617	a,d
8,15-pimaradien-18-oic acid				<i>_</i>	→ 0.141	0.581	b, a
isopimaric acid	-	-			0.621	5.818	a,d
levopimaric acid					0.682	0.083	b, d
abietic acid		P 1			29.129	2.643	a,d
Mark	er tipici	ai aici	ını tıpı	di piante			
					_		
			Dhyt	osteroids		_	
stigmasterol		1.52		0.687 -		0.569	
β-sitosterol		2.1		4.256 1.33		3.806	
• •	lone)	0.10		0.090 0.02	_	0.508	
stigmast-4-en-3-one (sitosteno	irie)	0.10		0.191 0.12	-	0.486	
stigmasta-3,5-dien-7-one			7.191 0.12				
stigmasta-4,6-dien-3-one		0.18 0.13				0.240	
			5/	0.170 0.17	4	0.176	
stigmastan-3-ol stigmastan-3-one		0.0		- 0.02	_	0.168	


Recovery* % HPAEC/PAD GC/MS
$$98.7\% \pm 70\% (n=6)$$
 $101.7\% \pm 5.1\% (n=6)$

* Calculated on extraction experiments spiking a levoglucosan solution of known concentration on the filter submitted to the same procedure followed for the samples

Riproducibilità: inferiore al 5%

Levoglucosano PM10 - PM2.5

Il levoglucosano è contenuto nella frazione fine del particolato

$$\left(\frac{PM_{2.5}}{PM_{10}}\right)_{\text{leverluces on}} = 0.85 \pm 0.16$$
 $\left(\frac{PM_{2.5}}{PM_{10}}\right)_{oc} = 0.78 \pm 0.15$

Levoglucoasano e componenti carboniose variano

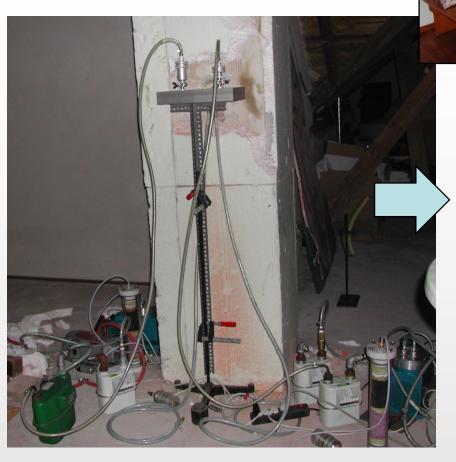
molto a seconda:

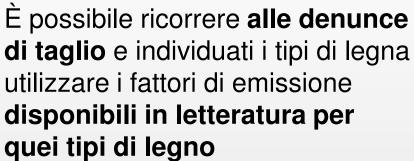
- del tipo di legno

della tipologia dell'impianto
 (caminetto aperto,
 chiuso, stufa tradizionale, ecc.)

 le condizioni (velocità di combustione, contenuto di umidità, diluizione)

È fondamentale stimare correttamente i fattori di emissione da utilizzare per una dato territorio


PM: Levo PM = PM WB: Levo Wb

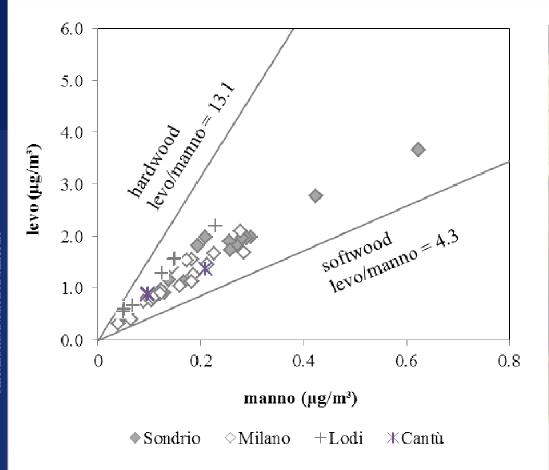

È necessario partire dalla stima dei fattori di emissione disponibili per i differenti tipi di legno utilizzati:

La stima dei fattori di emissione può essere effettuata sperimentalmente utilizzando le tipologie di legno e gli impianti di combustioni utilizzati sul territorio

In Lombardia solo per 1/3 delle specie denunciate sono disponibili i fattori di emissione in letteratura

Si è deciso di utilizzare questi fattori poiché non variano molto dai valori riportati in letteratura

		Levo/PM (μg/mg)	Levo-C/OC (µg/mg)	Levo/Manno (w/w)	OC/EC (w/w)
Φ.	nr. data	9	9	9	9
n th	average	103	78	9.2	10.0
fror	min	30	23	3.6	0.6
rdy	max	224	147	20	34
spe	median	107	63	5.8	3.3
only species from the Lombardy survey	25° percentile	41	44	3.9	2.6
•	75° percentile	133	89	7.9	10.0
ture	nr. data	62	74	68	62
all data from the literature	average	113	100	13.7	14.0
the	min	8.0	4.4	2.4	0.6
E	max	318	299	84	69
ta fr	median	108	88	6.6	5.5
da	25° percentile	61	43	4.5	2.6
a	75° percentile	142	113	20	21

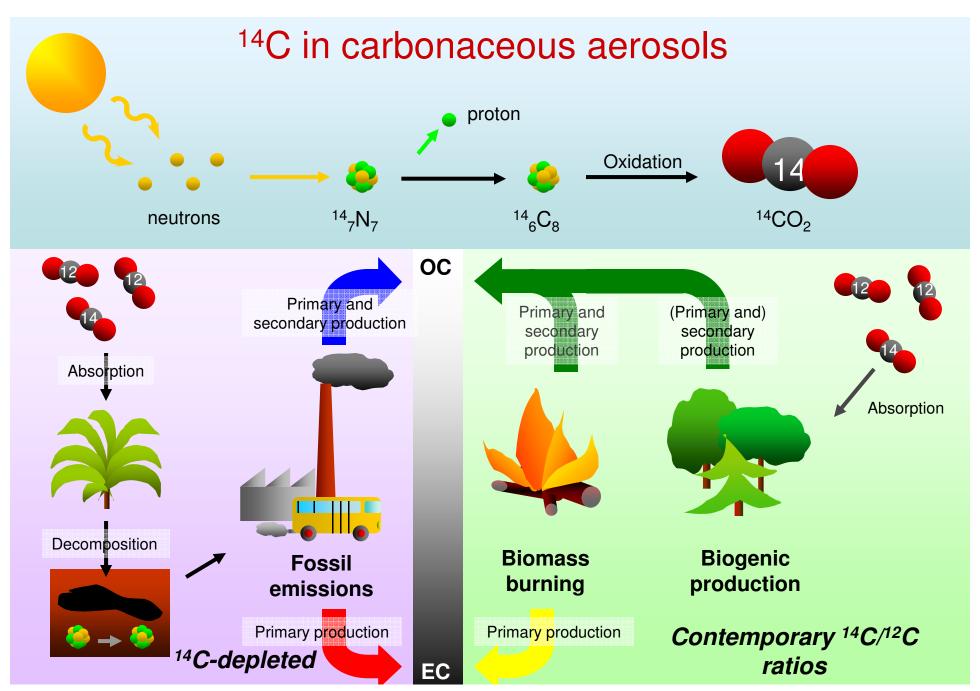


siæ	Season Year	Size fraction	Methodology	PM _{WB} (%)	OC _{WB}	EC _{WB}	Ref.
Italy	Winter 2005	PM10	macro-tracer	5.4-14.9	20.4-37.7	9.3-16.7	this work
	Winter 2006	PM10	macro-tracer	14.5-21.5	34.4-45.7	12.4- 22.3	this work
	Winter 2007	PM10	macro-tracer	7.5-22.0	23.4-48.0	9.5-23.0	unis work
Switzerland	Winter 2003	PM 10	¹⁴ C, macro- tracer		41±7	25±3	Szidat et al., (2006)
Austria	Winter 2004	PM 10	Macro-tracer	5.1 - 13	18.0 – 37.7		Caseiro et al., (2009)
France	Winter 2004	PM 2.5	Aethalometer		46 ((*)	Favez et al., (2009)
	Winter 2008	PM 2.5	CMB Aethalometer AMS-PMF		68 (**) 61 (**) 37 (**)	20 20	Favez et., (2010)
Germany	Winter 2005	PM 10	Macro-tracer	59±41			Bari et al., (2010)
Belgium	Winter 1998	PM 1	Macro-tracer		35		Zdràhal et al., (2002)
Norway	Winter 2002	PM 10	Macro-tracer	17.5 - 28			Yttri et al., (2005)
	Winter 2006	PM 1	PMF		41±15		Saarikosky et al., (2008)
Sweden	Winter 2004	PM 10	¹⁴ C, macro- tracer		10	29	Szidat et al., (2009)

Stima hardwood /softwood:

Hard wood (es. faggio; angiosperme): Levo/Manno= 14-15 Soft wood (es. abete): Levo/Manno= 3.6-3.9

Sondrio: 7


Mantova:13.6

Lodi: 10

Il tipo di legna bruciata in ciascun sito è lo stesso (buona correlazione tra i dati); varia però da sito a sito

1. Macro-tracer method (attraverso la quantificazione del radiocarbonio)

OC and EC separation for ¹⁴C analyses N. Perron, S. Szidat et al., Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, Villigen, Switzerland,

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 111, D07206, doi:10.1029/2005JD006590, 2006

Contributions of fossil fuel, biomass-burning, and biogenic emissions to carbonaceous aerosols in Zurich as traced by ¹⁴C

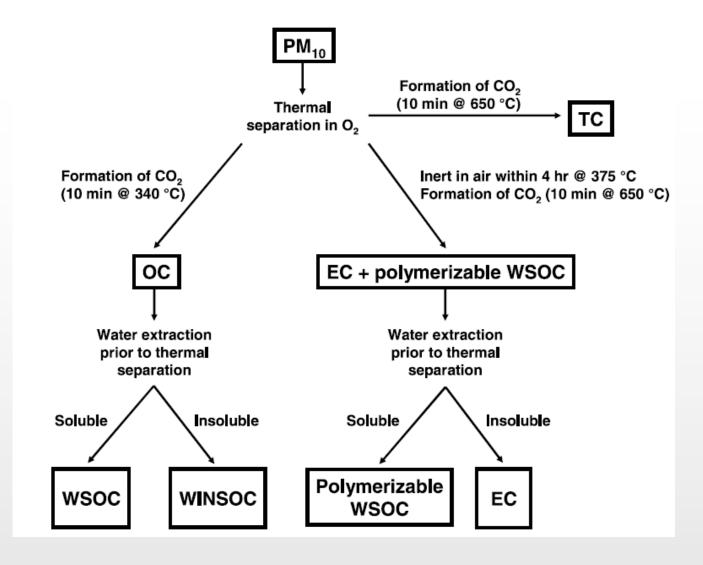
Sönke Szidat,¹ Theo M. Jenk,^{1,2} Hans-Arno Synal,³ Markus Kalberer,⁴ Lukas Wacker,⁵ Irka Hajdas,⁵ Anne Kasper-Giebl,⁶ and Urs Baltensperger²

$$f_{m} = \frac{[^{14}C/^{12}C]_{sample}}{[^{14}C/^{12}C]_{before 1950}}$$

$$f_{M,fossil} = 0.$$

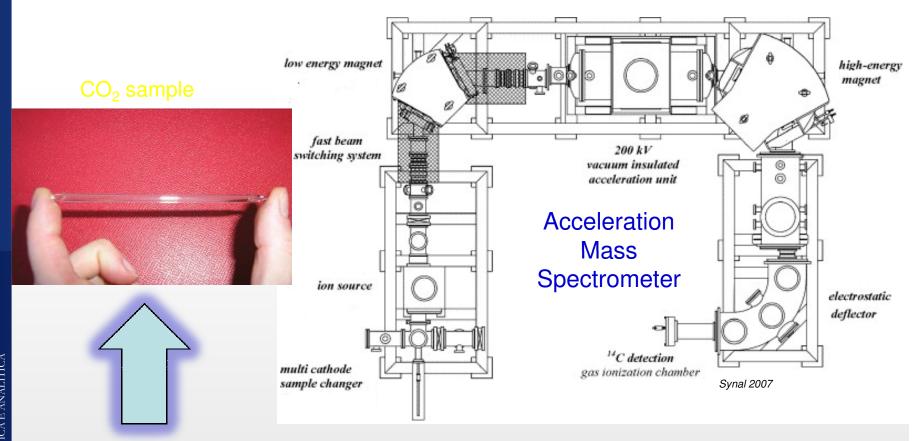
$$f_{M,biogenic} = 1.072 \pm 0.015$$
.

$$f_{M,bb} = 1.24 \pm 0.05$$


$$EC_{bb} = EC_{tot} \cdot \frac{f_M(EC)}{f_{M,bb}}$$

$$EC_{fossil} = EC_{tot} - EC_{bb}$$

$$\mathrm{OC}_{bb} = \frac{\mathrm{EC}_{bb}}{\left(\mathrm{EC}\middle/\mathrm{OC}\right)_{ER,bb}} = \frac{\mathrm{EC}_{tot}}{\left(\mathrm{EC}\middle/\mathrm{OC}\right)_{ER,bb}} \cdot \frac{f_{M}(\mathrm{EC})}{f_{M,bb}}$$



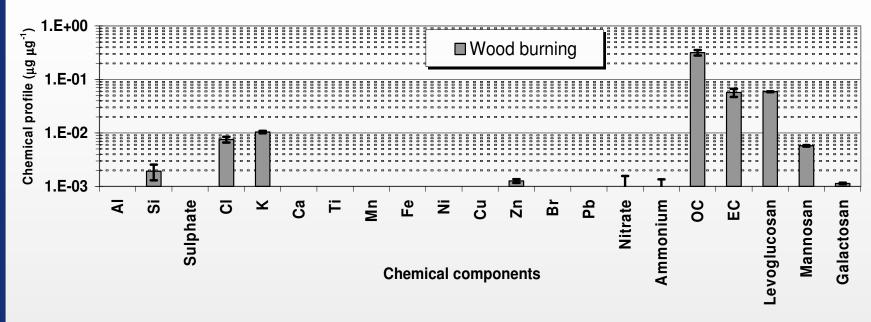
Metodo di preparazione del campione:

analisi di ¹⁴C attraverso la tecnica AMS

OC ed EC vengono separati termicamente, la CO₂ liquefatta e in seguito grafitizzata

Accordo tra i due approcci basi sulla misurara del radiocarbonio o del levoglucosano:

Sample	OC _{bb} (From EC _{bb}), μg m ⁻³	OC _{bb,lev} (From Levoglucosan), μg m ⁻³
16-21 August 2002	0.5 ± 0.2	0.6 ± 0.3
21–26 August 2002	0.2 ± 0.1	0.3 ± 0.2
Summer average	0.3 ± 0.1^{a}	0.4 ± 0.2^{a}
19-21 February 2003	6.7 ± 3.0^{b}	3.3 ± 1.9^{b}
21-23 February 2003	7.1 ± 3.2^{b}	4.7 ± 2.8^{b}
Winter average	6.9 ± 3.1^{a}	3.7 ± 2.2^{a}
6-11 March 2003	0.9 ± 0.4	1.3 ± 0.7
21-26 March 2003	1.5 ± 0.6	1.6 ± 1.0
Springlike average	1.1 ± 0.5^{a}	1.4 ± 0.8^{a}



^aWeighted average.
^bWeighted mean of two measurements.

2. Modelli recettore (Factor Analysis e Chemical Mass Balance)

L'applicazione della Positive Matrix Factorization permette di individuare le sorgenti di PM ed il loro contributo

Dal profilo di emissione della sorgente legna si possono ricavare i rapporti di emissione (Levo/PM, Levo-C/OC, OC/EC)

Bernardoni, V., Fermo, P., Piazzalunga, A., Valli, G., Vecchi, R., 2011. PM10 source apportionment in Milan (Italy) using time- and size-resolved data. The Science of the Total Environment (under revision)

Milano:

PMF → Levo/PM = 59 microgrammi/m³

Dati relativi alle topologie di legno presenti in Lombardia → Levo/PM = 103 microgrammi/m³

I rapporti derivati dalla PMF e stimati per ciascun sito possono rappresentare una valida alternativa all'approccio basato sulla stima dei fattori di emissione ricavati dalla letteratura.

<u>Bibliografia</u>

A. Piazzalunga, C. Belis, V. Bernardoni, O. Cazzuli, P. Fermo, G. Valli, R. Vecchi Estimates of wood burning contribution to PM10 in Lombardy (Po Valley, Italy) using different approaches Sottomesso per pubblicazione ad Atmos. Env.

Piazzalunga, A., Fermo, P., Bernardoni, V., Vecchi, R., Valli, G., De Gregorio, M. A., 2010a. A simplified method for levoglucosan quantification in wintertime atmospheric particulate matter by high performance anion-exchange chromatography coupled with pulsed amperometric detection. International Journal of Environmental Analytical Chemistry 90, 934-947.

Fermo, P., Piazzalunga, A., Vecchi, R., Valli, G., Ceriani, M., 2006. A TGA/FT-IR study for measuring OC and EC in aerosol samples. Atmospheric Chemistry and Physics, 6, 255-266

Fine, P. M., Cass, G. R., Simoneit, B. R., 2001. Chemical characterization of fine particle emissions from fireplace combustion of woods grown in the northeastern United States. Environmental Science & Technology 35, 2665-2675.

Fine, P. M., Cass, G. R., Simoneit, B. R. T., 2002. Chemical Characterization of Fine Particle Emissions from the Fireplace Combustion of Woods Grown in the Southern United States. Environmental Science & Technology 36, 1442-1451.

Fine, P. M., Cass, G. R., Simoneit, B. R. T., 2004a. Chemical Characterization of Fine Particle Emissions from the Wood Stove Combustion of Prevalent United States Tree Species. Environmental Engineering Science 21, 705-721.

Fine, P. M., Cass, G. R., Simoneit, B. R. T., 2004b. Chemical characterization of fine particle emissions from the fireplace combustion of wood types grown in the Midwestern and Western United States. Environmental engineering science 21, 387-409.

